SQL Query Performance – Filter on Join Criteria vs Where Clause

sqlsql-serversql-server-2008t-sql

Compare these 2 queries. Is it faster to put the filter on the join criteria or in the WHERE clause. I have always felt that it is faster on the join criteria because it reduces the result set at the soonest possible moment, but I don't know for sure.

I'm going to build some tests to see, but I also wanted to get opinions on which would is clearer to read as well.

Query 1

SELECT      *
FROM        TableA a
INNER JOIN  TableXRef x
        ON  a.ID = x.TableAID
INNER JOIN  TableB b
        ON  x.TableBID = b.ID
WHERE       a.ID = 1            /* <-- Filter here? */

Query 2

SELECT      *
FROM        TableA a
INNER JOIN  TableXRef x
        ON  a.ID = x.TableAID
        AND a.ID = 1            /* <-- Or filter here? */
INNER JOIN  TableB b
        ON  x.TableBID = b.ID

EDIT

I ran some tests and the results show that it is actually very close, but the WHERE clause is actually slightly faster! =)

I absolutely agree that it makes more sense to apply the filter on the WHERE clause, I was just curious as to the performance implications.

ELAPSED TIME WHERE CRITERIA: 143016 ms
ELAPSED TIME JOIN CRITERIA: 143256 ms

TEST

SET NOCOUNT ON;

DECLARE @num    INT,
        @iter   INT

SELECT  @num    = 1000, -- Number of records in TableA and TableB, the cross table is populated with a CROSS JOIN from A to B
        @iter   = 1000  -- Number of select iterations to perform

DECLARE @a TABLE (
        id INT
)

DECLARE @b TABLE (
        id INT
)

DECLARE @x TABLE (
        aid INT,
        bid INT
)

DECLARE @num_curr INT
SELECT  @num_curr = 1
        
WHILE (@num_curr <= @num)
BEGIN
    INSERT @a (id) SELECT @num_curr
    INSERT @b (id) SELECT @num_curr
    
    SELECT @num_curr = @num_curr + 1
END

INSERT      @x (aid, bid)
SELECT      a.id,
            b.id
FROM        @a a
CROSS JOIN  @b b

/*
    TEST
*/
DECLARE @begin_where    DATETIME,
        @end_where      DATETIME,
        @count_where    INT,
        @begin_join     DATETIME,
        @end_join       DATETIME,
        @count_join     INT,
        @curr           INT,
        @aid            INT

DECLARE @temp TABLE (
        curr    INT,
        aid     INT,
        bid     INT
)

DELETE FROM @temp

SELECT  @curr   = 0,
        @aid    = 50

SELECT  @begin_where = CURRENT_TIMESTAMP
WHILE (@curr < @iter)
BEGIN
    INSERT      @temp (curr, aid, bid)
    SELECT      @curr,
                aid,
                bid
    FROM        @a a
    INNER JOIN  @x x
            ON  a.id = x.aid
    INNER JOIN  @b b
            ON  x.bid = b.id
    WHERE       a.id = @aid
        
    SELECT @curr = @curr + 1
END
SELECT  @end_where = CURRENT_TIMESTAMP

SELECT  @count_where = COUNT(1) FROM @temp
DELETE FROM @temp

SELECT  @curr = 0
SELECT  @begin_join = CURRENT_TIMESTAMP
WHILE (@curr < @iter)
BEGIN
    INSERT      @temp (curr, aid, bid)
    SELECT      @curr,
                aid,
                bid
    FROM        @a a
    INNER JOIN  @x x
            ON  a.id = x.aid
            AND a.id = @aid
    INNER JOIN  @b b
            ON  x.bid = b.id
    
    SELECT @curr = @curr + 1
END
SELECT  @end_join = CURRENT_TIMESTAMP

SELECT  @count_join = COUNT(1) FROM @temp
DELETE FROM @temp

SELECT  @count_where AS count_where,
        @count_join AS count_join,
        DATEDIFF(millisecond, @begin_where, @end_where) AS elapsed_where,
        DATEDIFF(millisecond, @begin_join, @end_join) AS elapsed_join

Best Answer

Performance-wise, they are the same (and produce the same plans)

Logically, you should make the operation that still has sense if you replace INNER JOIN with a LEFT JOIN.

In your very case this will look like this:

SELECT  *
FROM    TableA a
LEFT JOIN
        TableXRef x
ON      x.TableAID = a.ID
        AND a.ID = 1
LEFT JOIN
        TableB b
ON      x.TableBID = b.ID

or this:

SELECT  *
FROM    TableA a
LEFT JOIN
        TableXRef x
ON      x.TableAID = a.ID
LEFT JOIN
        TableB b
ON      b.id = x.TableBID
WHERE   a.id = 1

The former query will not return any actual matches for a.id other than 1, so the latter syntax (with WHERE) is logically more consistent.

Related Question